20=-16t^2+88+0

Simple and best practice solution for 20=-16t^2+88+0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20=-16t^2+88+0 equation:



20=-16t^2+88+0
We move all terms to the left:
20-(-16t^2+88+0)=0
We get rid of parentheses
16t^2-88-0+20=0
We add all the numbers together, and all the variables
16t^2-68=0
a = 16; b = 0; c = -68;
Δ = b2-4ac
Δ = 02-4·16·(-68)
Δ = 4352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4352}=\sqrt{256*17}=\sqrt{256}*\sqrt{17}=16\sqrt{17}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{17}}{2*16}=\frac{0-16\sqrt{17}}{32} =-\frac{16\sqrt{17}}{32} =-\frac{\sqrt{17}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{17}}{2*16}=\frac{0+16\sqrt{17}}{32} =\frac{16\sqrt{17}}{32} =\frac{\sqrt{17}}{2} $

See similar equations:

| 125+120x=110x+180 | | 8x+32=3x+12 | | r−31=8 | | -4(6x-3)=-20-16x | | 6x-26+4x+6=180 | | 105(t)=-5t^2-10t+180 | | 8x-4x=-33-15 | | 2.25x+12=45.75 | | 2a*2-15a+18=0 | | 63+68+-9x-5=180 | | 4(y-2)=1 | | (3x+10)+(2x+45)=90 | | 3x+4+2x+3+2x-9=75 | | 3x+5x=-20-12 | | 2.5(y+2/5)=13 | | -3x+5x-16=14 | | -4(y-2)=1 | | –4k=–6−3k | | 17y-12=22 | | z–31=–8 | | 100/b+5=30 | | 136-3x-1=180 | | 3/7(p-7)=3 | | -2h=23 | | ?+8k=0 | | X+2x=-15+9 | | 1x+7=23. | | 9x-2x=-21-14 | | -6(2/3-3x)=-22 | | 7(x-2)=x+4+3 | | 6x-2x=10+18 | | 4x+x=-17-13 |

Equations solver categories